If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-9w-580=0
a = 1; b = -9; c = -580;
Δ = b2-4ac
Δ = -92-4·1·(-580)
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-49}{2*1}=\frac{-40}{2} =-20 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+49}{2*1}=\frac{58}{2} =29 $
| 2s+6=148+5s-5 | | -3x+6=-9(x+2) | | 3/4x-1/2=-4 | | 8-10p=-9p-10-4p | | Y/3=2y-10 | | -4(v-2)=9v+34 | | -3x-13=8x+12 | | 23.00+25.50m=40.003m+21.25 | | x=1.23 | | -q=-8+7q | | -9x+15=-6(x-7) | | -5u+2=-4u+8 | | 2x+6/9=12/x | | 8y-11=43 | | -2(-2x)=4-8(1-x) | | -k+12=-4(-3+5k) | | 8(x+1)=2x-28 | | 2x+0.8=1.2/9 | | 2y-22=47 | | 6x-9=3(x-5) | | 5.1g+7=3.1g+17 | | 4z=-z+5 | | 150m-125m+43,650=42,225-200 | | 9÷(x+10)=7÷9 | | -7k-10=-8k | | n+-5=-13 | | 3=-16t2+160t+2 | | 6+1-7x+3x=7-4x | | 0.4x+1.18=-3.1(2-0.1) | | 5.6g+6=2.6g+18 | | 4(x-7)=-6(x-2) | | 100+n=-100 |